Reynolds, B. \& Carson, J. (1970). Chem. Abstr. 72, 55528v.
Sakari, T., Sogo, A., Wakahara, A., Kanai, T., Fujiwara, T. \& Tomita, K. (1976). Acta Cryst. B32, 3235-3242.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Shoja, M. (1988). Acta Cryst. C44, 2238-2239.

Vijayalakshm, B. K. \& Srinivasan, R. (1975). Acta Cryst. B31, 999-1003.
Waite, M. G. \& Sim, G. A. (1971). J. Chem. Soc. B, pp. 1102-1104.
Wei, P. H. L. \& Stanley, C. (1970). Chem. Abstr. 73, 66635z.
White, A. C. \& Black, R. M. (1976). Chem. Abstr. 85, $177505 z$.

Methyl 1,6-Dihydro-1-(dimethylcarbamoyl)-4-methyl-6-oxo-2-phenyl-3pyridinecarboxylate

By Tullio Pilati
Centro CNR per lo Studio delle Relazioni fra Struttura e Reattività Chimica, Via Golgi 19, I-20133 Milano, Italy

(Received 15 November 1989; accepted 16 January 1990)

Abstract

C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}, \quad M_{r}=314 \cdot 34\), monoclinic, $P 2_{1} / n, a=8.494$ (1), $b=18.303$ (3), $c=10.364$ (2) \AA, $\beta=101.51(1)^{\circ}, \quad V=1578.8$ (4) $\AA^{3}, \quad Z=4, \quad D_{x}=$ $1.322 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $8.9 \mathrm{~mm}^{-1}, F(000)=664$, room temperature, final R $=0.041$ for 2051 observed reflections with $I>\sigma(I)$. Crystal grown by evaporation from ethyl ether and n-hexane. The title compound is an unexpected product of the alcoholysis of a substituted $6 \mathrm{H}-1,3-$ oxazin-6-one. The heterocyclic ring has an envelope conformation with $C(2)$ out of the plane of the other atoms. The deviation from planarity is due to intermolecular interactions.

Introduction. As part of a continuing investigation on the structure and reactivity of 1,3 -oxazin- 6 -ones and of their reaction products (Becalli, Benincori \& Marchesini, 1988; Becalli \& Marchesini, 1987; Becalli, Marchesini \& Pilati, 1989; Pilati, 1988, 1989), we report the crystal and molecular structure of the title compound (III), obtained by Marchesini (1989), from the substituted 1,3-oxazin-6-one (I), according to the following scheme.

(I)

0108-2701/90/112134-03\$03.00

The title compound was completely unexpected; in fact, under the same conditions, the reaction of other 4,5-substituted 2-(N, N-dimethylamino)-1,3-oxazin6 -ones gives acyclic compounds like (II), or products in which the dimethylamino group is shifted from position 2 to position 6. This X-ray crystal analysis was undertaken to confirm the structure of this new product.

Experimental. IR data (Nujol): 1716, 1668, $1602 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{CHCl}_{3}\right)$: $7.4(5 \mathrm{H}, \mathrm{m})$, $6.4(1 H, s), \quad 3.43(3 H, s), \quad 2.85(3 H, s), \quad 2.80(3 H, s)$, $2.3(3 \mathrm{H}, \mathrm{s})$; melting point $396-397 \mathrm{~K}$. Crystal size 0.35 $\times 0.25 \times 0.075 \mathrm{~mm}$. Nonius CAD-4 diffractometer with graphite monochromator; lattice parameters determined using 25 reflections in the θ range $13-15^{\circ}$; data collection $0<\theta<25^{\circ}$; $h k l$ range: $0 \rightarrow 10$, $0 \rightarrow 21,-12 \rightarrow 12$; three standard reflections, no significant variation of intensity. Of 2765 independent data collected, 2051 with $I>\sigma(I)$ were considered observed. Data were corrected for Lorentz and polarization coefficients, not for absorption. The structure was solved by direct methods using MULTAN11/82 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982). All heavy atoms were obtained from the 'best' E map. H atoms placed in calculated positions, refined isotropically, non- H anisotropically. The function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}, \quad$ where $\quad w=4 I_{o} /\left[\sigma^{2}\left(I_{o}\right)+0.0001 I_{o}^{2}\right]$ and I_{o} is the intensity on an absolute scale. A secondary-extinction parameter g [Larson (1967), equation (3)] was refined [final value $\left.6.0(7) \times 10^{-6}\right]$. The range of the final difference Fourier map was $\pm 0.2 \mathrm{e} \AA^{-3}$; in the last cycle, $(\Delta / \sigma)_{\text {max }}$ was $0.05 ; S=$ $1.90, R=0.041$ and $w R=0.034$ for 2051 observed reflections. Scattering factors were taken from International Tables for X-ray Crystallography (1974).
© 1990 International Union of Crystallography

Programs used include Enraf-Nonius SDP (Frenz, 1983), ORTEPII (Johnson, 1976), PARST (Nardelli, 1983), and various in-house programs for refinement and geometrical analysis running on a Gould NPI computer.

Discussion. Table 1 lists final refined coordinates and $U_{\text {eq }}$ values for non-H atoms.* Fig. 1 shows the molecule with the numbering scheme of heavy atoms. Table 2 reports bond distances and bond angles. The heterocyclic ring has an envelope conformation, with atoms $\mathrm{N}(1), \mathrm{C}(3), \mathrm{C}(4), \mathrm{C}(5)$ and $\mathrm{C}(6)$ strictly on the same plane A; atoms $\mathrm{C}(2)$ and $\mathrm{O}(7)$ are out of the plane in the same direction by 0.050 (2) and 0.138 (2) \AA, respectively. This small but significant distortion from planarity is probably due to the intermolecular interactions between $O(7)$ and two C(12) methyl groups located at (i) $-\frac{1}{2}-x,-\frac{1}{2}+$ $y, \frac{1}{2}-z$ and (ii) $-x,-y, 1-z$, respectively; the short distances involved are: $\mathrm{O}(7) \cdots \mathrm{C}\left(12^{i}\right) \quad 3 \cdot 284$ (4), $\mathrm{O}(7) \cdots \mathrm{C}\left(12^{\mathrm{ii}}\right) 3 \cdot 358(3), \mathrm{O}(7) \cdots \mathrm{H}\left(122^{\mathrm{i}}\right) 2 \cdot 54$ (3) and $\mathrm{O}(7) \cdots \mathrm{H}\left(123^{\mathrm{ii}}\right) 2 \cdot 59(3) \AA$. With $\mathrm{O}(7)$ on the plane A, these distances would become much more asymmetric ($3 \cdot 171,3 \cdot 495,2 \cdot 44$ and $2.72 \AA$, respectively). The atoms of the benzene ring (plane B) are coplanar, within a maximum deviation of 0.005 (2) \AA. The closeness of the benzene ring to the methoxycarbonyl and dimethylaminocarbonyl groups prevents much conjugation between the heterocyclic ring and these three groups; in fact, the dihedral angle between the planes A and B is $49.66(7)^{\circ}$; those between A and the least-squares planes through $\mathrm{C}(5), \mathrm{C}(9), \mathrm{O}(10), \mathrm{O}(11)$ and through $\mathrm{N}(1), \mathrm{C}(19), \mathrm{O}(20)$ and $\mathrm{O}(21)$ are even greater, being 70.71 (8) and $75.65(8)^{\circ}$, respectively.

[^0]

Fig. 1. ORTEPII (Johnson, 1976) plot of the molecule with numbering scheme. Thermal ellipsoids at 20% of probability; H atoms not to scale.

Table 1. Final atomic coordinates and equivalent isotropic temperature factors $\left(\AA^{2}\right)$
$U_{\mathrm{eq}}=\left(1 / 6 \pi^{2}\right) \sum_{i} \sum_{j} \boldsymbol{\beta}_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.

	x	y	z	$U_{\text {eq }}$
O(7)	-0.0159 (2)	0.21940 (8)	0.3288 (2)	0.0490 (6)
$\mathrm{O}(10)$	-0.1985 (2)	-0.10244 (9)	0.1680 (2)	0.0589 (7)
O(11)	-0.1446 (2)	-0.11290 (8)	0.3865 (1)	0.0454 (5)
$\mathrm{O}(20)$	0.3216 (2)	0.12775 (9)	0.3352 (2)	0.0553 (7)
$\mathrm{N}(1)$	0.0491 (2)	$0 \cdot 10527$ (9)	0.2685 (2)	0.0334 (6)
$\mathrm{N}(21)$	0.1946 (2)	0.1746 (1)	0.1393 (2)	0.0437 (7)
$\mathrm{C}(2)$	-0.0531 (3)	0.1543 (1)	0.3176 (2)	0.0383 (8)
C(3)	-0.1922 (3)	$0 \cdot 1214$ (1)	0.3505 (2)	0.0407 (9)
C(4)	-0.2198 (2)	0.0489 (1)	0.3447 (2)	0.0367 (8)
C(5)	-0.1079 (2)	0.0022 (1)	0.2985 (2)	0.0327 (7)
C(6)	0.0254 (2)	0.0303 (1)	0.2611 (2)	0.0319 (7)
C (8)	-0.3680 (3)	0.0170 (2)	0.3822 (3)	0.055 (1)
$\mathrm{C}(9)$	-0.1521 (3)	-0.0764 (1)	0.2750 (2)	0.0371 (8)
C(12)	-0.2141 (4)	-0.1855 (2)	0.3742 (3)	0.058 (1)
C(13)	0.1447 (2)	-0.0159 (1)	0.2114 (2)	0.0315 (7)
C(14)	0.1934 (3)	-0.0011 (1)	0.0938 (2)	0.0370 (8)
C(15)	0.3008 (3)	-0.0469 (1)	0.0487 (2)	0.0452 (9)
$\mathrm{C}(16)$	0.3587 (3)	-0.1083 (1)	$0 \cdot 1193$ (3)	0.0507 (9)
C(17)	$0 \cdot 3101$ (3)	-0.1239 (1)	0.2353 (3)	0.0497 (9)
C(18)	0.2050 (3)	-0.0780 (1)	0.2812 (2)	0.0404 (8)
C(19)	$0 \cdot 2024$ (3)	$0 \cdot 1377$ (1)	0.2508 (2)	0.0392 (8)
C(22)	0.0483 (4)	$0 \cdot 1906$ (2)	0.0439 (3)	0.054 (1)
C(23)	0.3445 (4)	$0 \cdot 2055$ (2)	0.1139 (4)	0.070 (1)

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{O}(7)-\mathrm{C}(2)$	$1.232(2)$	$\mathrm{O}(10)-\mathrm{C}(9)$	$1.200(3)$
$\mathrm{O}(11)-\mathrm{C}(9)$	$1.326(2)$	$\mathrm{O}(11)-\mathrm{C}(12)$	$1.450(4)$
$\mathrm{O}(20)-\mathrm{C}(19)$	$1.213(3)$	$\mathrm{N}(1)-\mathrm{C}(2)$	$1.412(3)$
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.387(2)$	$\mathrm{N}(1)-\mathrm{C}(19)$	$1.475(3)$
$\mathrm{N}(21)-\mathrm{C}(19)$	$1.329(3)$	$\mathrm{N}(21)-\mathrm{C}(22)$	$1.455(3)$
$\mathrm{N}(21)-\mathrm{C}(23)$	$1.464(4)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.427(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.345(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.431(3)$
$\mathrm{C}(4)-\mathrm{C}(8)$	$1.508(4)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.368(3)$
$\mathrm{C}(5)-\mathrm{C}(9)$	$1.493(3)$	$\mathrm{C}(6)-\mathrm{C}(13)$	$1.489(3)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.390(3)$	$\mathrm{C}(13)-\mathrm{C}(18)$	$1.389(3)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.387(3)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.377(3)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.377(5)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.378(4)$
$\mathrm{C}(9)-\mathrm{O}(11)-\mathrm{C}(12)$	$116.0(2)$	$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(19)$	$120.9(2)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(19)$	$114.2(2)$	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)$	$123.8(2)$
$\mathrm{C}(22)-\mathrm{N}(21)-\mathrm{C}(23)$	$117.1(2)$	$\mathrm{C}(19)-\mathrm{N}(21)-\mathrm{C}(23)$	$117.3(2)$
$\mathrm{C}(19)-\mathrm{N}(21)-\mathrm{C}(22)$	$125.5(2)$	$\mathrm{O}(7)-\mathrm{C}(2)-\mathrm{N}(1)$	$118.9(2)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$114.6(2)$	$\mathrm{O}(7)-\mathrm{C}(2)-\mathrm{C}(3)$	$126.5(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$123.4(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)$	$121.2(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$118.9(2)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(8)$	$119.9(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(9)$	$117.9(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120.8(2)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(9)$	$120.7(2)$	$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$118.4(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(13)$	$122.9(2)$	$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(13)$	$118.7(2)$
$\mathrm{O}(11)-\mathrm{C}(9)-\mathrm{C}(5)$	$112.2(2)$	$\mathrm{O}(10)-\mathrm{C}(9)-\mathrm{C}(5)$	$124.1(2)$
$\mathrm{O}(10)-\mathrm{C}(9)-\mathrm{O}(11)$	$123.6(2)$	$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{C}(18)$	$119.4(2)$
$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{C}(14)$	$122.4(2)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	$118.2(2)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$120.6(2)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$120.2(2)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$119.7(2)$	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$120 \cdot 2(2)$
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$121.1(2)$	$\mathrm{N}(1)-\mathrm{C}(19)-\mathrm{N}(21)$	$114.9(2)$
$\mathrm{O}(20)-\mathrm{C}(19)-\mathrm{N}(21)$	$126.4(2)$	$\mathrm{O}(20)-\mathrm{C}(19)-\mathrm{N}(1)$	$118.7(2)$

There are a few other short intermolecular contacts; the most significant are between $\mathrm{O}(10)$ and the hydrogen atoms $\mathrm{H}(223)(-x,-y,-z)$ and $H(14)(-x,-y,-z)[2 \cdot 40(4)$ and $2 \cdot 53$ (2) \AA, respectively], and $\mathrm{O}(20) \cdots \mathrm{H}(82)(x-1, y, z)[2 \cdot 48(2) \AA]$.

References
Becalli, E., Benincori, T. \& Marchesini, A. (1988). Synthesis, pp. 886-888.
Becalli, E. \& Marchesini, A. (1987). J. Org. Chem. 52, 3426-3434.

Becalli, E., Marchesin, A. \& Pilati, T. (1989). Tetrahedron, 45, 7485-7500.
Frenz, B. A. (1983). Enraf-Nonius Structure Determination Package; SDP Users Guide. Version of 6 January 1983. EnrafNonius, Delft, The Netherlands.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 149-150. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Main, P., Fiske, S. J., Hull, S. E. Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Marchesini, A. (1989). Unpublished.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Pllati, T. (1988). Acta Cryst. C44, 1256-1262.
Pilati, T. (1989). Acta Cryst. C45, 923-926.

Acta Cryst. (1990). C46, 2136-2146

Structures of Double-Hydrogen-Bonded Adducts of 1,8-Biphenylenediol and Related Compounds

By Jack Hine, \dagger Kyunghye Ahn, Judith C. Gallucci* and Shwn-Meei Linden
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA

(Received 30 November 1989; accepted 12 January 1990)

Abstract

X-ray crystal structures were determined for 1,8-biphenylenediol (1) and its $1: 1$ adducts with hexamethylphosphoric triamide (4), 2,6-dimethyl-4pyrone (5) and 1,2,6-trimethyl-4-pyridone (6), for the adduct of 4,5-dinitro-1,8-biphenylenediol (2) with (5), for the adduct of 2,7-dimethyl-1,8-biphenylenediol (3) with (6), and for 1,8-dimethoxybiphenylene (7). 1,8-Biphenylenediol, (1), $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{2}, M_{r}=184 \cdot 20$, orthorhombic, $P c a 2_{1}, a=14.056$ (2), $b=4.952$ (1), c $=24 \cdot 134(3) \AA, \quad V=1680 \AA^{3}, \quad Z=8, \quad D_{x}=$ $1.46 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Мо $K \bar{\alpha})=0.71069 \AA, \mu=0.92 \mathrm{~cm}^{-1}$, $F(000)=768, T=150 \mathrm{~K}$, final $R=0.048$ for all 1985 unique reflections. 1,8-Biphenylenediol-hexamethylphosphoric triamide, (1.4), $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{2} . \mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{OP}$, $M_{r}=363 \cdot 40$, monoclinic, $P 2_{1} / n, a=8.527$ (1), $b=$ 15.099 (4), $\quad c=15.354$ (3) $\AA, \quad \beta=95.17(1)^{\circ}, \quad V=$ $1969 \AA^{3}, \quad Z=4, \quad D_{x}=1 \cdot 23 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \bar{\alpha})=$ $0.71069 \AA, \mu=1.54 \mathrm{~cm}^{-1}, F(000)=776, T=217 \mathrm{~K}$, final $R=0.077$ for the 2351 unique reflections with $F_{o}^{2} \geq 2 \sigma\left(F_{o}^{2}\right)$. 1,8-Biphenylenediol-2,6-dimethyl-4pyrone, (1.5), $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{2} . \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}, \quad M_{r}=308 \cdot 34$, triclinic, $\quad P \overline{1}, \quad a=8.983(1), \quad b=13.450(2), \quad c=$ $6.926(1) \AA, \quad \alpha=85.15(1), \quad \beta=106.19(1), \quad \gamma=$ $109.72(1)^{\circ}, \quad V=756 \AA^{3}, \quad Z=2, \quad D_{x}=1.35 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda(\operatorname{Mo} K \bar{\alpha})=0.71069 \AA, \quad \mu=0.88 \mathrm{~cm}^{-1}, \quad F(000)=$ $324, T=148 \mathrm{~K}$, final $R=0.048$ for the 2592 unique reflections with $F_{o}{ }^{2} \geq 1 \cdot 5 \sigma\left(F_{o}^{2}\right)$. 1,8-Biphenylenediol-1,2,6-trimethyl-4-pyridone, (1.6), $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{2} . \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}$, $M_{r}=321 \cdot 38$, monoclinic, $P 2_{1} / n, a=7.639(1), b=$ $22.130(4), \quad c=9.411(1) \AA, \quad \beta=90.66(1)^{\circ}, \quad V=$

[^1]$1591 \AA^{3}, \quad Z=4, \quad D_{x}=1.34 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \bar{\alpha})=$ $0.71069 \AA, \mu=0.84 \mathrm{~cm}^{-1}, F(000)=680, T=150 \mathrm{~K}$, final $R=0.048$ for the 2188 unique reflections with $F_{o}{ }^{2} \geq 3 \sigma\left(F_{o}{ }^{2}\right) .4,5-$ Dinitro-1,8-biphenylenediol-2,6-di-methyl-4-pyrone, (2.5), $\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} . \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}, \quad M_{r}=$ 398.33, monoclinic, $P 2_{1} / n, \quad a=12.298$ (4), $\quad b=$ $9 \cdot 173$ (2) , $\quad c=16.247$ (6) $\AA, \quad \beta=102.59(2)^{\circ}, \quad V=$ $1789 \AA^{3}, \quad Z=4, \quad D_{x}=1.48 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \bar{\alpha})=$ $0.71069^{\circ} \AA, \mu=1.10 \mathrm{~cm}^{-1}, F(000)=824, T=292 \mathrm{~K}$, final $R=0 \cdot 122$ for 1886 unique observed reflections with $\quad F_{o}{ }^{2} \geq 0$. 2,7-Dimethyl-1,8-biphenylenediol-1, 2,6-trimethyl-4-pyridone, (3.6), $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} . \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}$, $M_{r}=349 \cdot 43$, orthorhombic, Cmca, $a=20.489$ (5), b $=7.736(1), c=24.930(6) \AA, V=3951 \AA^{3}, Z=8, D_{x}$ $=1.17 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \bar{\alpha})=0.71069 \AA, \quad \mu=$ $0.73 \mathrm{~cm}^{-1}, F(000)=1488, T=294 \mathrm{~K}$, final $R=0 \cdot 130$ for the 921 unique observed reflections with $F_{o}{ }^{2} \geq 0$. 1,8-Dimethoxybiphenylene, (7), $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}, \quad M_{r}=$ 212.25, monoclinic, $\quad P 2_{1} / c, \quad a=15 \cdot 378$ (3), $\quad b=$ $13.360(3), \quad c=10.896(2) \AA, \quad \beta=109.57(1)^{\circ}, \quad V=$ $2109 \AA^{3}, \quad Z=8, \quad D_{x}=1.34 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \bar{\alpha})=$ $0.71069 \AA, \mu=0.83 \mathrm{~cm}^{-1}, F(000)=896, T=159 \mathrm{~K}$, final $R=0.041$ for the 3011 unique observed reflections with $F_{o}^{2} \geq 3 \sigma\left(F_{o}^{2}\right)$. Each molecule of (1) is hydrogen bonded through its two hydroxy groups, either as donor or acceptor, to four other molecules of (1). For each of the five adducts both hydroxylic H atoms of the diol are hydrogen bonded to the same basic O atom of the base. This basic O atom is within $0.45 \AA$ of the least-squares plane of the biphenylene ring in all cases. In the adducts the distances between the two hydroxy O atoms are increased to an average 4.28 (4) from the average

[^0]: * Lists of structure factors, anisotropic thermal parametrs and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52975 (20 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: \dagger Deceased 6 July 1988.

 * Author to whom correspondence should be addressed.

